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The velocity of first sound is calculated from the adiabatic elastic constants usingthe lowest-
order self-consistent phonon scheme. The velocity of sound is also calculated from the limiting
slopes of phonon dispersion curves using a conserving approximation. Results are presented
for models appropriate to solid Kr and solid Xe. The maximum difference appears to be of
order 4% or less at the respective melting temperatures. This has the important consequence
that the limiting slopes of phonon dispersion curves should be in agreement at least to this
accuracy with conventional ultrasonic measurements and Brillouin-scattering experiments.
Thus the apparent discrepancies between ultrasonic and neutron data in solid Ar do not appear

to be due to this effect.

1. INTRODUCTION

Phonon energies have now been measured'~* in
several rare-gas solids (RGS), and the velocity of
sound has been observed by conventional ultra-
sonic methods, ®~!° Brillouin scattering, !* and
stimulated Brillouin scattering.!? Further experi-
ments will no doubt be forthcoming. At present
for solid fcc Ar there are discrepancies between
the ultrasonic work and the slopes of phonon dis-
persion curves.* These differences probably have
their origin in the difficulty associated with car-
rying out experiments on RGS. In this connection
a possible large difference between the velocities
of zero sound and first sound could also be con-
sidered. Such an effect has already been predicted!?
and observed!* in alkali halide crystals and in
quartz. ! It is the purpose of this paper to give an
estimate for the magnitude of this effect in RGS.
Previous estimates for RGS have been vague and
only qualitative in nature. Accordingly we cal-
culate here the adiabatic elastic constants (which
determine the velocity of first sound) and compare
these with elastic constants derived from the ap-
propriate slopes of phonon dispersion curves. In
spirit the calculations follow closely the work of
Cowely on alkali halides.!* The range of validity
of the conventional perturbation theory of anhar-
monic effects seems to be considerably wider for
alkali halides than RGS.!® Thus for RGS it is
necessary to use the self-consistent phonon theory
if the calculated high-temperature properties are
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to be at all meaningful. '’ Some care is needed to
ensure that a conserving approximation is employed
when calculating these sound velocities within a
self-consistent phonon scheme. !*!? Section II
outlines our calculations and presents the results
for Lennard-Jones (12-6) nearest-neighbor models
appropriate to Kr and Xe. Anticipating these we
find the difference between the neutron velocity of
sound and first sound to be always less than 4%.
Therefore the discrepancies alluded to above would
appear to be due to experimental difficulties rather
than any intrinsic property of a perfect fcc RGS.

II. OUTLINE OF CALCULATIONS AND RESULTS

The theory of self-consistent elastic constants
has been given in detail elsewhere. *'%® Cowley’s
article'® gives an excellent discussion of why the
propagation of first sound is determined by the
adiabatic elastic constants, and we shall not repeat
his arguments here. Our calculation of isothermal
elastic constants follows exactly the procedures
outlined in Ref. 20. Adiabatic (first-sound) elastic
constants were then obtained by thermodynamic
correction in the usual fashion. The interatomic
potentials were the same as those used previous-
ly. "% Some selected results for Kr and Xe are
shown in Table I. We recall that for cubic crys-
tals the elastic constants are usually obtained from
the wave propagation directions using the following
relationships:
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TABLE I. Comparison of CS, adiabatic (first-sound)
elastic constants, with C’, the elastic constants obtained
from the slopes of phonon dispersion curves.

Substance
(lattice  Temperature Pressure c? [l
constant) °K) (kbar) Direction ¢ (kbar) (kbar)
Kr 2.5 -0.38 [00£)T 0.030 22.59 22.61
(5.67 A) (00¢]T 0.100 22.43 22.61
[0££]Ty 0.167 22,02 22,61
(00£]JL  0.030 44.53 44.58
[00£]L  0.100 44.23 44.58
[0£¢]T, 0.167 11.37 11,66
91 1.25 [00¢)T 0.100 22,93 22,23
[ogg)Ty 0.167 22,69 22.23
[0t¢)T, 0.167 11.59 11,18
186 3.07 [00£]T 0.100 24.21 23,26
[0£4)Ty 0.167 24.18 23,26
[0s5)T, 0.167 12.02 11.12
Xe 169 -0.22 [00¢)T 0.030 15.03 14.32
(6.354 A) (00:}JT 0.100 15.08 14,32
[0£5)Ty 0.020 15.13 14,32
logglT, 0.070 15.08 14,32
[00£)L  0.030 33.91 32.13
(005)JL 0.100 33.87 32.13
[0£¢)T, 0.020 8.48 8.01
[0££)T, 0.070 8.60 8.01
[0££])L  0.070 40.09 38.42.

(£00] 7~ Cy,
(660] T~ Cys,

(££0]T,~ 3(Cyy - Cyp), ete.

Wallace? has discussed the generalization to the
case of nonzero initial stress. In actual numerical
calculations for RGS this latter effect is important.
Elastic constants obtained from the slopes of the
phonon branches indicated above?? are also shown
in the table. The appropriate phonon energies were
calculated using the theory outlined in Ref. 19 and

identical numerical procedures. We stress that
our phonon energies and the elastic constants have
been calculated using a conserving approximation. !®
At low temperatures and small wave vector the
elastic constants are in excellent agreement as
they should be!® which incidentally confirms our
numerical work. The difference between the neu-
tron sound velocity and first sound increases as
the temperature rises but is never more than a few
percent. The agreement to better than 1% between
neutron elastic constants derived from [£00]T and
[££0] T, phonon branches of Xe at 160 °K, seems
to indicate that for RGS, unlike alkali halides, 13
the usual symmetry properties® hold very well.
Moreover, if the models employed here are at all
realistic, and they are believed to be, then it will
be extremely difficult to detect any differences
between zero and first sound experimentally in
RGS.

III. SUMMARY

Using a simple nearest-neighbor model for the
interatomic forces and a self-consistent phonon
theory for the dynamics, we have calculated the
difference between the velocity of first sound and
that derived from the slopes of phonon curves in
RGS, Kr, and Xe. We find the difference between
the respective sound velocities to be always less
than a few percent.
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2The wave velocities were obtained from the phonon
curves by computing phonon energies and dividing by the
wave vector. Thus dispersion has some effect as can be

seen from the £ dependence of the Kr 2.5 °K results.
However, dispersion causes C® > C° which therefore tends
to reduce the effect discussed in this paper.
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The bare-exciton theory of light scattering in crystals is generalized to include dispersive

effects, and to incorporate damping in a first-principles calculation.

The theory is applied

to exciton-mediated Raman scattering; expressions for the first- and second-order Raman
cross sections due to a single discrete exciton level are derived, and the resonance behavior
investigated. For small couplings and intermediate dampings the predictions of the present
generalized theory are very similar to available bare-exciton and undamped-polariton predic-

tions, while differing, however, for large couplings.

The cross sections are resonant when

the incoming or outgoing photon frequencies lie near an exciton frequency, and peak sharply
for small photon-exciton couplings and dampings. Actual calculations are presented for vari-
ous choices of the parameters, among them parameters appropriate to CdS. A comparison
of the present theory with other theories and with experiment is carried out.

I. INTRODUCTION: HAMILTONIAN, BACKGROUND
EFFECTS, AND GENERAL CONSIDERATIONS

A. Introductory Remarks

Encouraged by recent advances in laser technol-
ogy, Raman scattering (RS) from crystals at optical
frequencies has emerged as a useful tool for study-
ing the electronic, as well as the lattice, properties
of crystals.! A fundamental class of electronic ex-
citations in a large variety of crystals (including
ionic, molecular, and semiconducting ones) are
interacting electron-hole pairs, or excitons. RS
enables an investigation of exciton energy levels
and the nature of their interactions with light and
lattice vibrations. 2

A number of papers have employed, in various
forms, a “bare-exciton, ” or perturbation-theory,
approach? to light-scattering problems, which has
the advantages of being relatively simple and in-
tuitively appealing. Toyozowa’s treatment of light
absorption, * and Ganguly and Birman’s (GB) treat-
ment? of RS, provide examples of the application of
this approximate procedure. Its major advantage,
as will be seen later, lies in enabling a fairly
straightforward analysis of certain of the seemingly
more complex aspects of a given problem. We will
develop the bare-exciton framework here because
we believe it leads to a useful approximate theory
of resonance RS, in a form which may be followed
by experimentalists and nonexperts in the field. In
this situation, we feel, its full exposition and ex-
ploitation constitutes a highly desirable adjunct to
the development and implementation of more rigor-
ous and more elegant approaches.

An example of a more elegant (and, from a com-
putational point of view, much more complicated)
approach to light-scattering problems is that of
polariton (composite-quasiparticle) theory.3~7 We
have, e.g., applied polariton theory to certain as-
pects of RS in insulators, in a parallel paper.® The
purpose of the present work, on the other hand, is
(a) the generalization of the bare-exciton framework
in a number of ways especially relevant for calcula-
tions of resonance phenomena; (b) a detailed appli-
cation of the theory to first- and second-order RS
in insulators in the optical frequency regime.

The results of the present approach, which will,
from here on, be referred to as “generalized-exci-
ton theory, ” will be contrasted with those of po-
lariton theory®” for certain special cases.

The present generalizations include:

(a) A derivation of aformalism whichaccounts for
background effects, including, as well, the presence
of background absorption. This is important in re-
ducing the complexity of various calculations by
allowing one to concentrate on a limited number of
interactions of interest (cf. Secs. IB and II C).

(b) Anintroduction of scattering theory soas toin-
clude damping effects from first principles. Such
a procedure is essential in the resonance regime,
where, if damping were omitted, the resonances
would appear as singularities in the cross section, 2
thus limiting the usefulness of the results (cf. Sec.
IO A and Appendix).

(c) A proposal of anempirically introduced, but
physically motivated, procedure to account for dis-
persion of light near resonance, which may be
shown to lead to results in agreement with more ex-



